MOX Fuel in PWR
EDF Experience

Sino-French Seminar on the Back End of the Nuclear Fuel Cycle

November 5th, 2015
SOMMAIRE

1. GENERAL PRESENTATION OF FRENCH NUCLEAR CYCLE
2. REACTOR ADAPTATION FOR MOX UTILIZATION IN PWR
3. MOX IMPACT ON REACTOR OPERATION
4. CONCLUSION
GENERAL PRESENTATION OF FRENCH NUCLEAR FUEL CYCLE
The French NPP fleet

- 58 PWR units in operation (total installed capacity 63,130 MWe)
 - 900 MWe: 34 units
 - 1300 MWe: 20 units
 - 1500 MWe: 4 units
- 1 PWR in construction: EPR 1600 MWe

Until the end of 2014

- 80,000 Fuel Assemblies (FAs) loaded in reactor (4,500 MOX and 1,350 ERU)

In 2014, EDF’s generation:

- Nuclear: 415.9 TWh (90.4%)
- Hydraulic: 37.5 TWh (8.1%)
- Fossil: 6.9 TWh (1.5%)
THE FRENCH FUEL CYCLE STRATEGY

NUCLEAR FUEL CYCLE

- Uranium mines
- Reversible disposal in deep geological formations (2025)
- Long-lived nuclear waste
- Treatment and storage facilities
- Spent fuel reprocessing plants
- Customers
- Short-lived nuclear waste
- Natural uranium
- Enrichment plants
- Fuel fabrication plants
- EDF’s operating fleet

EDF
Since 1980, in accordance with the French Energy Policy, EDF decided to implement a “one-through” closed fuel cycle.

- The irradiated fuels are sent to La Hague reprocessing plant where uranium, plutonium are separated from waste (fission products and minor actinides).
 - The reprocessed uranium is enriched to produce ERU fuel
 - The plutonium is mixed with depleted uranium to produce MOX fuels in MELOX plant at Marcoule.
- Once irradiated, MOX and ERU spent fuels are safely stored in pools, waiting for the achievement of multi-recycling in GEN IV fast breeder reactors

Reprocessing allows reduction of waste in volume and saves uranium resources

- MOX fuel and ERU fuel utilization enabled to save approximately two years of uranium consumption
- Reduction of the volume of nuclear waste by a factor of 4
- The “one-through” closed fuel cycle is a first step towards the fully closed fuel cycle with Pu multi-recycling in GEN IV fast breeder reactors
The amount of about one annual discharged fuel is processed each year to produce Pu for the manufacture of MOX (Mixed Oxide) fuel:

- About 1,000 t of heavy metal from spent fuel give 10 t of Pu and 120 t of MOX
- It is required to reduce interim storage of Pu, because of progressive creation of americium reducing its quality; so recycling separated Pu is not delayed
- MOX assemblies fabrication is similar to UOX, major differences are in radioprotection arrangements

24 PWR 900 MWe units licensed for MOX utilization

- Licensing began in 1987
- The two last units (Blayais 3 and 4) were licensed in 2013, MOX loading is planned in 2017-2018.
REACTOR ADAPTATION FOR MOX UTILISATION IN PWR
REACTOR ADAPTATION FOR MOX

- With 30% MOX in the core => higher Pu content (0.5% -> 2%)
 - Higher energy spectrum
 - Reduced efficiency of reactivity control devices (boron, RCCAs)

⇒ To compensate for this effect

- In the primary circuit
 - For reactivity control in operation and during shutdown
 - Reinforcement of the control rods pattern (8 new RCCAs added)
 - Increase of boron concentration in the boron make-up tank up to 7500 ppm

- In the safety injection system
 - To meet safety criteria for over cooling accidents and LOCA
 - Increase of boron concentration of the refueling water storage tank (up to 3000 ppm)
CORE MANAGEMENT

- History of core management
 - 30% of MOX fuels in the core
 - Zoning of fuel for MOX / UOX flux interface:
 - 3 zones with specific Pu content
 - Energy equivalence increase:
 - From 1987 to 1995:
 - 3 batches for UOX and MOX, annual cycle
 - Each reload: 16 MOX (3.25% equivalent) + 36 UOX (3.25%)
 - Pu content: 5.3% (fissile Pu: 70% total Pu)
 - UOX max BU: 36 GWd/t, MOX max BU: 42 GWd/t
 - From 1995 to 2007:
 - 4 batches for UOX and 3 batches for MOX, annual cycle
 - Each reload: 16 MOX (3.25% equivalent) + 28 UOX (3.7%)
 - Pu content: 5.3% (fissile Pu: 70% total Pu)
 - UOX max BU: 36 GWd/t, MOX max BU: 42 GWd/t
 - then 7.08% (fissile Pu: 63% total Pu)
 - From 2007 to 2014:
 - 4 batches for UOX and MOX, annual cycle “Parity MOX” core management
 - Each reload: 12 MOX (3.7% equivalent) + 28 UOX (3.7%)
 - Increase of Pu content: 8.65% (fissile Pu: 63% total Pu)
 - UOX/MOX average discharge: 48 GWd/t
 - UOX/MOX maximum BU: 52 GWd/t

- Decrease of fissile Pu content in reprocessed UOX fuel when BU increases
 - Necessity to increase Pu content in MOX for energy equivalence
FUEL BUILDING ADAPTATION FOR MOX

- Gamma and neutron activities of MOX fresh fuel (Pu238, Am241)
 - Risk of higher exposure of the operators during transportation and handling

- Fuel receipt and storage adaptation (for radiological reasons)
 - Handling crane reinforcement (hardware and software) : capacity, reliability, safe and limited movements
 - Direct storage under water
 - Visual examination by video camera of each fresh MOX FA under water
 - Emergency switch on the fuel building ventilation (red mushroom head switch)
 - Reinforced safeguards on the plant during MOX handling (sensor cameras, fuel building access, …)

- Spent fuel transport after 3 or 4 years cooling time
 - Slower decrease of decay heat in MOX
TRANSPORTATION OF FRESH MOX FUEL

- **Fresh Fuel transportation by MX8 Cask:** design similar to spent fuel cask
 - In operation since July 2004

- **Main goals:**
 - Improved transport safety and nuclear materials safeguards
 - Reduced doses during unloading

- **Doses reduction achievements:**
 - Average value in 2012: 0.7 mSv / shipment
 - Maximum value: 1 mSv / Shipment (half gamma, half neutron)
 - Thanks to handling automation, limited number of operators and biological protection use
TRANSPORTATION OF IRRADIATED MOX FUEL

- **Spent MOX fuel transportation in standard spent fuel casks**
 - Each cask load with 4 MOX (center zone) and 8 UOX (peripheral zone)
 - About 40 to 60 shipments per year to La Hague reprocessing plant
 - Similar average dose for UOX and MOX shipments
 - Less than 1% of the annual collective dose due to spent fuel transport

- **TN 112 ; new spent fuel cask dedicated to MOX fuel**
 - Capability : 12 MOX FAs
 - Better protection regarding neutron flux than TN12
 - To obtain more flexibility in spent fuel transport
 - First TN112 in operation from 2008, second TN112 in 2015
MOX LICENSING AND REGULATION

- Safety reports needed for a new core management licensing with MOX fuel
 - Accidental transients studies review
 - New Operating technical Specifications
 - Material and documentation modifications technical reports

- Safety reports needed for licensing of a new fuel assembly (MOX)
 - Neutronic design report
 - Thermo-hydraulic design report
 - Mechanical design report
 - Rod thermo-mechanical design report
 - LOCA

- Operation feed-back experience: yearly report during MOX fuel irradiation
 - Core physics start-up tests and flux maps: good agreement between predicted and calculated values
 - Assembly visual examination during outage: geometry, corrosion (as expected)
 - Doses during fresh fuel deliveries and in operation

- Parity MOX:
 - Implementation decided in 2001, 2 years needed to perform the safety studies and 4 years for licensing (cladding corrosion, Fuel Gas Release, ..)
MOX IMPACT ON REACTOR OPERATION
IMPACT SUMMARY

- No change regarding plant availability of the PWR 900MWe fleet:
 - Same annual cycle
 - Light increase of outage duration due to increase of decay heat

- No significant impact regarding operational maneuverability
 - For all units with MOX fuel, load follow has been authorized in 1995, after 5 years of smooth operation on Saint-Laurent 1 and 2
 - Better axial flux stability during power transients (reduced Xenon efficiency)

- No increase in the small amounts of waste release in the environment
 - Reduced volume of effluents (30%) during power transients
 - Similar gaseous and liquid waste release for MOX and UOX plants

- No impact on radioprotection.
 - Doses during outage mainly due to maintenance
 - Low sensibility to fuel (BU or Pu content)

- In case of disruption in the supply chain, MOX fuels can be replaced by UOX fuels in reload batches.

- No impact of Fukushima event specific to MOX
CONCLUSION
CONCLUSION

- The different steps of the nuclear fuel cycle are strongly connected
- The whole strategy saves nuclear material and allows to reduce waste in volume
- Burning MOX fuel in reactor is a routine operation for EDF, nevertheless some operation aspects are specific to MOX, mainly regarding logistics
- From 2007, implementation of MOX Parity fuel management achieves the balance of MOX and UOX fuel performance
- Every stage is involved in technical and economical performance of the nuclear generation
- Burning MOX in PWR is a first step towards the sustainable fuel cycle that will lead to Pu multi-recycling in GEN IV fast breeder reactors.
THANKS